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Abstract 

Diffraction experiments provide information on the 
Fourier components of microscopic density distributions 
in crystals. To obtain the spatial densities themselves, an 
inverse Fourier problem has to be solved. The procedure 
is complicated by the presence of noise and incomplete- 
ness of the data. The application of the maximum- 
entropy (MaxEnt) principle was a breakthrough in 
density reconstruction, allowing high-quality density 
maps to-be obtained without involving any a priori 
information concerning what the reconstructed density 
should look like. In this work, a procedure is proposed 
that incorporates a priori (e.g. theoretical) information 
into MaxEnt reconstructions of spin density distributions. 
It allows, on the one hand, the evaluation of the existing 
density models and, on the other, the precise investiga- 
tion of what new information the experiment brings. 
Unlike traditional parameter-refinement techniques, the 
new method does not impose any strict constraints on the 
density to be reconstructed and is thus much more 
flexible. At the same time, it suppresses artifacts and 
yields high-quality density maps. The advantages of the 
n e w  methods are illustrated by an example of spin 
density reconstruction based on real polarized neutron 
diffraction ~lata. 

Introduction 

Diffraction experiments provide microscopic information 
on the scattering densities in crystals. In these methods, 
the Bragg intensities are measured, sometimes along with 
the phases of the related structure factors. The main 
information obtained is on structures: crystal structures 
from X-ray or neutron diffraction or magnetic structures 
from neutron diffraction. More and more experiments are 
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performed to produce an accurate map of the scattering 
density itself: the charge density from X-ray experiments, 
the nuclear density from neutron experiments or the spin 
(magnetization) density from polarized neutron experi- 
ments. 

In crystals, the scattering densities are periodic and the 
Bragg amplitudes are the Fourier components of these 
periodic distributions: 

F(hkl) = f p(r)exp(ikr) dr. (1) 

In principle, the scattering density p(r) is given by the 
inverse Fourier transform of the experimental structure 
factors: 

p(r) = 1/V o ~ exp(-ikr)F(hkl) ,  (2) 
h,k,l 

where the triple sum includes all the indices h, k, l, 
ranging from - o o  to -boo and V 0 is the unit-cell volume. 
In fact, the number of measured reflections is limited and 
the inverse Fourier transformations that can be achieved 
are incomplete. Furthermore, the experimental structure 
factors are noisy, each F(hkl) being measured with a 
standard deviation tr(hkl). Therefore, the solution of the 
inverse problem is not unique. An infinite number of 
scattering density maps that are consistent ,uith the 
measurements exist, namely all the maps for which the 
Fourier components corresponding to the measured 
Bragg reflections are compatible with the results of the 
measurements, with no condition at all on the Fourier 
components that have not been measured. 

Among all the maps compatible with the data, the 
commonly adopted Fourier inversion procedure, which 
makes use of the series (2) with the sum limited to the 
structure factors actually measured, selects one of them: 
the map whose Fourier coefficients are equal to zero if 
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unmeasured and equal to their observed values other- 
wise. Obviously, this choice is completely arbitrary and 
does not consider the experimental uncertainties at all. 
Also, the unmeasured data are 'invented' and thus spatial 
correlations for which there is no experimental evidence 
are blindly imposed. 

Several more motivated approaches to solving the 
inverse Fourier problem that arises in polarized neutron 
diffraction exist (see, for example, Gillon & Schweizer, 
1989). Among these are the model refinement methods. 
They consist of constructing a parametrized model of the 
spin density and least-squares refining the parameters to 
best fit the experimental data. Another model-indepen- 
dent method recently appeared (Papoular & Gillon, 1990; 
Papoular & Delapalme, 1994). It uses the idea of 
maximum entropy (MaxEn0 (Gull & Skilling, 1984; 
Skilling & Gull, 1985) and its application was a 
breakthrough in polarized-neutron-data treatment. 

The aim of this paper is to show that the previously 
mentioned data analysis, which is based on Bayesian 
(conditional) probabilities, with a 'fiat' 'prior knowl- 
edge', may be improved by using an adapted model as 
'prior knowledge'. An example of spin density recon- 
struction from a polarized neutron experiment is 
described in detail, in which the prior knowledge used 
is derived from theoretical chemistry principles. 

Traditional MaxEnt for density reconstruction 
(uniform prior model) 

The Bayesian approach to solving the inverse Fourier 
problem evaluates the probability for each of the possible 
reconstructed maps, given that the Fourier coefficients 
are the measured structure factors Fob s within the related 
experimental error bars. Such a conditional posterior 
probability can be written as p(mapldata). 

Here it is suitable to use the very general Bayes 
equality 

p(AIB)p(B) = p(BIA)p(A), (3) 

which gives the posterior probability 

p(mapldata) - p(datalmap)p(map)/p(data). (4) 

In this relation, p(datalmap) is the likelihood. It 
represents the probability for the set of experimental 
data Fobs(hkl) to be observed if the map is the real map. 
In other words, it represents the agreement between Fob s 
and FcaI and can be written as 

p(datalmap) cx exp( -x  2/2) (5) 

within a multiplicative factor. Here, p(map) is the prior 
probability. It represents all the knowledge pertaining to 
the density map that was available before the experiment 
that produced the set of data Fob s was performed, p(data), 
the intrinsic probability of the data, is a normalizing 

constant that we shall ignore in the remaining part of this 
paper. We are thus left with 

p(mapldata) cx exp(-x2/2)p(map), (6) 

which means that the probability of a map, given the set 
of measured data Fobs(hkl), is not expressed in terms of 
x2only, but also includes the prior probability of the map. 
The question of assigning the prior probability to a 
distribution arises. 

In the traditional maximum-entropy method, the prior 
knowledge of the map is reduced to the assumption that 
all the points of the map are equally likely to carry the 
scattering density. Indeed, the crystallographic unit cell is 
divided into small pixels, inside which the scattering 
density is supposed to be constant: p ( r ) =  Pi. The a 
priori probability of finding some density in a given 
pixel is the same for each pixel (or 'flat'). In this case, it 
has been shown that the probability p(map) can be 
evaluated in combinatorial terms and expressed as the 
Boltzman entropy of the distribution: 

p[p(r)] = f(Entropy) 

Entropy[p(r)] = - ~ Pi In/3 i, (7) 
i 

where f is a monotonous function and 

19i = Pi/  ~ Pj (8) 
J 

To select the map that provides the highest value of 
p(mapldata), one has to optimize both the likelihood and 
the entropy of the distribution. 

The method has been used for the reconstruction of 
charge densities from X-ray data (Sakata & Sato, 1990; 
Sakata, Mori, Kumazawa & Takata, 1990; Sakata, Uno, 
Takata & Mori, 1992) as well as for maps of nuclear 
densities from neutron data (Papoular, Prandl & Schiebel, 
1991; Papoular & Schweizer, 1991; Papoular, Roth, 
Heger, Haluska & Kuzmany, 1993; Papoular, Ressouche, 
Schweizer & Zheludev, 1993; Sakata, Uno, Takata & 
Howard, 1993) or for spin densities from polarized 
neutron data (Papoular & Gillon, 1990; Papoular, Roth, 
Heger, Haluksa & Kuzmany, 1993; Papoular, Ressouche, 
Schweizer & Zheludev, 1993; Papoular & Delapalme, 
1994; Boucherle et al., 1992, 1993; Zheludev et al., 
1994a,b). In the two last cases, the extension of the 
method from strictly positive scattering densities to 
densities that can be either negative or positive has been 
achieved by considering a double distribution p/+ = 
p+(r/) and PF =p-(ri) with p ( r ) = p + ( r ) - p - ( r )  
(Papoular & Gillon, 1992). The density maps obtained 
by this method, as compared to those resulting from the 
common inverse Fourier transformation, are tremen- 
dously improved. In particular, any substantial deviations 
from a background exhibited in the final map is really 
contained in the data, as it costs entropy compared to a 
map that would ignore such features. 
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Introduction of a non-uniform model as prior 
knowledge 

In many cases, before the measurements are carded out, 
the experimentalist knows something about the investi- 
gated distribution such as, for example: the scattering 
density is due ~ to electrons located mainly around the 
nuclei; the scattering density is due to p (or d or f )  
electrons; the scattering density is not too far from a 
theoretical model obtained from more or less elaborate 
calculations. In such cases, the flat prior knowledge used 
in traditional MaxEnt (FME), which considers all the 
different pixels as equally likely, is too weak a 
requirement in spite of its successes and has to be 
replaced. In general, the a priori knowledge of the 
scattering density is expressed as a spatial function m(r), 
which can be used as a 'default model' of the required 
map. Skining (1988) has shown that the prior knowledge 
can be encoded into the maximum-entropy formalism 
through the model re(r) via a new definition of the 
entropy, which emerges from a rigorous Bayesian 
analysis: 

EntropyLo(r)] = ~ [Pi - m i  - P i  ln(pi/mi)]. (9) 
i 

In the absence of any data, the global maximum of the 
entropy functional is reached for p ( r ) =  m(r) and this 
equality would stand in the absence of data. In other 
words, one can say that any substantial departure from 
the model observed in the final map is really contained in 
the data as, with the new definition, it costs entropy. 

These last considerations bring us to the fact that there 
are actually several ways of using MaxEnt with a default 
model (DMME) for density reconstructions: 

(i) DMME allows one to obtain a better density map 
than the one resulting from the application of FME. 
Indeed, all the information missing in the experimental 
data but required to produce a reconstruction is not 
'invented', but taken from a priori (e.g. theoretical) 
knowledge. 

(ii) DMME provides a unique way to analyze a set of 
experimental data and to extract the pieces of physical or 
chemical information that are contained in it. The 
comparison of the final map with the default model 
shows exactly in what points of space the default model 
is unable to account for the experimental observations, 
that is, what new information the experiment brings. 

(iii) In the case of competition between several 
models, the new method provides a way to use the 
experimental data to choose the best one. The models 
that give greater final values of entropy when used as 
defaults for DMME fit the data better. 

A worked-out example 

We demonstrate on a particular example how the use of a 
default model may improve the quality of MaxEnt 
reconstructions and help to interpret the experimental 

results. The new method was used to treat the polarized 
neutron diffraction data collected on a molecular 
compound, tetrabutylammonium tetracyanoethylenide 
[BuaN]+{[TCNE] °- } (Zheludev et al., 1994a,b). The 
[TCNE] °- molecule (Fig. 1) is a free radical and hence 
carries an unpaired electron, which is the cause for the 
paramagnetic behavior of the compound as a whole. 
According to elementary chemical considerations, the 
singly occupied molecular orbital (SOMO) of [TCNE] °- 
is an antibonding MO, constructed of IPz) (z axis is _1_ to 
this practically planar ion) atomic orbitals (AOs). The 
cation is a closed-shell system, thus no spin density is 
expected to reside on it. The aim of the experiment was 
to determine the spin density distribution in the anion, 
which is of fundamental importance for the under- 
standing of the exchange interaction in several new 
molecular magnets (Miller, Epstein & Reif, 1988; 
Manriquez, Yee, McLean, Epstein & Miller, 1991). 

[TCNE]°-[Bu4N] + crystallizes in a monoclinic space 
group P21/n (a = 14.651, b = 8.446, c = 19.669~,, 

= 106.21°). An aligned magnetization density was 
induced in the sample by applying an external magnetic 
field H = 4.65 T at T = 1.6 K. Altogether~ 211 flipping 
ratios were collected up to sin 0/2 = 0.36 A - .  After the 
low-temperature structure was determined from a 
conventional neutron diffraction experiment, the corre- 
sponding magnetic structure factors FM(hkl) could be 
derived, together with the related error bars. 

Historical perspective 

For the reconstruction of the spin density from the F re's, 
several methods have been used. The results obtained by 
direct Fourier inversion are shown in Fig. 2. First, the 
spin density in the asymmetric unit cell was recon- 
structed. A rectangular 'box' containing one [TCNE] °- 
radical was then defined. The spin density confined in 
this box was projected along one of the box edges. It can 
be seen that the quality of this reconstruction is very low, 
the image is smeared out and the spin density is found all 
over the place, including far away from the nuclei. 

The conventional (i.e. with a fiat default model) 
MaxEnt 3D reconstruction is shown in Fig. 3. The 
historic MaxEnt algorithm was applied to reconstruct the 
density in the asymmetric cell on a 32 x 32 x 32 pixel 
grid. A program based on the MEMSYS-3 subroutine 
library (Gull & Skilling, 1989) was used for this. The 

N / 

N/C(sp) C(S~N 
Fig. 1. Structural formula of the [TCNE]'- radical ion. 
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projection procedure described above was then imple- 
mented to obtain this 2D image. The features of the spin 
density distribution are well discernible. In particular, the 
main part of the spin is found on the central sp 2 C atoms 
and the N atoms. It is notable that the spin density on the 
central C atoms is not centered but  rather shifted 
outwards away from the C ~ C  bond, This means that 
the antibonding bent character of the SOMO is strongly 
emphasized in this radical-ion. Is this feature indeed 
present in the experimental data or is it an artifact due to 
the reconstruction method? 

This question was finally answered by modeling the 
spin density (Zheludev et al., 1994a,b). The density was 

Fig. 2. Spin density in [TCNE] °- [Bu4N] + obtained by Fourier inversion 
and subsequent projection onto the molecular plane of [TCNE] °-. 
Contours are 0.01bt B A -2. Negative contours are dashed. 

expanded into a multipolar series around the nuclei 
(Brown, Capiomont, Gillon & Schweizer, 1979) and the 
population coefficients were refined to best fit the 
experimental data. The problem that was encountered 
was that an accurate description of the deformation of the 
spin density on the C ~ C  bond required too many 
multipolar functions from a standard basis set. As a 
result, too many parameters were used to model the 
density on a single atomic site and the model became 
overparametfized. It took a lot of trial refinements and 
intuition to eliminate the nuisance parameters and leave 
only those really vital for modeling the effect. The 
technique described in this paper shows a standard 
procedure which yields similar results, requires less 
labour and is much more justified in the sense of 
information theory. 

Application of our new method: using a non-uniform 
prior model 

First, a default model (DM) was constructed. The spin 
density was described in terms of individual atomic 
magnetic Slater-type orbitals ~Pi: 

S(r) = ~Si~Pi(r)ap'/(r).  (10) 
i 

The S i coefficients are the atomic spin populations. 
Elementary molecular orbital considerations suggest 
including 12pz) orbitals for the N and sp 2 C sites. Note 
that the axial symmetry (absence of off-centering) of the 
spin density on the central C sites is intrinsic to this 
choice of DM. The values for the Si were taken from 
local spin density (LSD) calculations (Zheludev et al., 
1994a,b). A projection of the theoretical spin density S(r) 
onto the molecular plane of the radical is shown in Fig. 4. 

) ° o 

Fig. 3. Spin density [TCN'E]'-[Bu4N] + obtained by traditional flat- 
model MaxEnt reconstruction and subsequent projection onto the 
molecular plane of [TCNE]'-. Contours are 0.01/z B ,~-2. 

Fig. 4. Atomic orbital model for the spin density in [TCNE]*- [Bu4N] + 
projected onto the molecular plane of [TCNE]*-. Contours are 
0.05/x a tk -2. Negative contours are dashed (step 0.01/z 8 ,~-2). 
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A non-trivial point is that this model density is 
negative in some points of space since the spin 
population of the four sp C atoms is negative. The 
model density in (9) plays the role of a Lebegian measure 
('weight') assigned to the pixels and is thus essentially 
positive. One way to overcome this problem is to use two 
model densities, one for the positive part p+ and one for 
the negative contribution p~-. In this work, we have used 
another approach adopted in tl2e MEMSYS-3 subroutine 
package. The absolute value S(r) -- IS(r)l of (10) was 
utilized for both p+ and PT. The algorithm was given full 
freedom to choose the sign of spin density in accord with 
the experimental data. 

A 3D 32 x 32 x 32 array of pixels representing the 
asymmelric unit cell was filled with values calculated 
using this DM S(r). This simple atomic orbital DM was 
then used to reconstruct the spin density in the crystal 
using the historical MaxEnt algorithm. The result (in 
projection) is shown in Fig. 5. The map of differences 
between this reconstruction and the theoretical density 
S(r) is presented in Fig. 6. 

Discussion 

Comparing Fig. 3 and Fig. 5, one readily sees that the 
new MaxEnt with a default atomic orbital model 
(DMME) gives reconstructions of much higher quality 
than the traditional FME. The information necessary to 
construct a spatial density, which is missing in the 
experimental data, is not invented, which it is when using 
Fourier inversion. Neither does the algorithm reconstruct 
it trying to avoid spatial correlations not present in the 

data, like FME. On the contrary, the missing information 
is taken from a theoretical model. 

Fig. 6 demonstrates that, if the model is unable to fit 
the experimental data, the new information contained in 
the latter shows up in the reconstruction. The DMME 
reconstruction is not simply a reproduction of the DM. It 
points out exactly where the DM fails to describe the spin 
distribution. According to the latter, the spin density is 
centered on the sp 2 carbon sites. The DMME reconstruc- 
tion shows that, in reality, a significant off-centering is 
present. The fact that the calculated shift of the spin 
density is symmetrical on the two sites proves the 
reliability of the result. Another feature contained in the 
data, but not in the model, is the inequality of the spin 
populations of the N atoms. 

Unlike FME, DMME recovers the correct signs of the 
spin population of three of the four sp C atoms. Thus, 
DMME does more than simply use the information 
contained in the DM to fill in the gaps in the incomplete 
data. Indeed, it makes better use of the information that is 
contained in the latter. 

It has to be emphasized that the DMME reconstruc- 
tion, like FME and unlike model ref'mement (e.g. 
multipolar expansion) reconstructions, still fits the 
experimental data, X 2 = 1 exactly. In DMME, the DM 
affects only the entropy functional and not the likelihood 
itself (X 2 term). It is a much 'softer' way of introducing a 
priori knowledge into the data treatment than parameter 
refinement methods, which very severely constrain the 
possible reconstructions. Any feature present in the data 
has the opportunity to manifest itself. 

Naturally, some indirect 'pressure' on the reconstruc- 
tion is still exerted by the model. The space in the crystal 
is not treated as homogeneous, as opposed to FME. For 

Fig. 5. Spin density in [TCNE]'-[Bu4N] + obtained by MaxEnt 
reconstruction using the default model shown in Fig. 4 and 
subsequent projection onto the molecular plane of [TCNE]'-. 
Contours are 0.05/zs,~ -2. Negative contours are dashed (step 
0.01/~ B ,~-2). 

Fig. 6. Difference between the reconstructed (Fig. 5) and model (Fig. 4) 
spin densities in [TCNE]°-[Bu4N] + projected onto the molecular 
plane of [TCNE] °-. Contours are 0.025/z B ,~-2. Negative contours 
are dashed. 
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example, the same deviation of the reconstructed density 
from the value of the DM in points of space where the 
DM is close to zero costs more entropy than in those 
points where the value of DM is large. In the case of spin 
densities, no serious problem is anticipated since there is 
no doubt that the spin density rapidly decays with 
distance from the nuclei. Rather, this effect is desirable 
since it favors localized densities and eliminates artifacts. 
On the contrary, close to the nuclei where the DM is 
large, a deviation from DM is less 'costly' and more 
freedom of the spin density shape is allowed. 

If the existence of scattering density in regions of 
space where the DM approaches zero is plausible, the 
DM should be modified in such a way that this deviation 
from zero would not be so 'expensive' in terms of 
entropy. For example, m(r) may be replaced by 
m'(r) = max[m(r), m0], where m 0 is a positive constant. 

Concluding remarks 

The introduction of a non-uniform prior model of the 
scattering density greatly enhances the quality of MaxEnt 
density reconstructions and also provides a means to 
further improve our modeling by comparing the model 
(prior) density to the MaxEnt (posterior) density, which 
fits the data exactly. 

Although the proposed procedure makes use of a 
model, it is not a parametrized process. It is still a direct 
method as the reconstructed density is not constrained by 
the model, which is used as a reference only for default. 
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